3.564 \(\int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=75 \[ \frac {2 (a A+3 b B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 (a B+A b) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

[Out]

2*(A*b+B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*(A*a+3
*B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*A*sin(d*x+
c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {2954, 2968, 3023, 2748, 2641, 2639} \[ \frac {2 (a A+3 b B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 (a B+A b) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]

[Out]

(2*(A*b + a*B)*EllipticE[(c + d*x)/2, 2])/d + (2*(a*A + 3*b*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*A*Sqrt[
Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) (A+B \sec (c+d x)) \, dx &=\int \frac {(b+a \cos (c+d x)) (B+A \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\\ &=\int \frac {b B+(A b+a B) \cos (c+d x)+a A \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 a A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2}{3} \int \frac {\frac {1}{2} (a A+3 b B)+\frac {3}{2} (A b+a B) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 a A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+(A b+a B) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} (a A+3 b B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 (A b+a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (a A+3 b B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 67, normalized size = 0.89 \[ \frac {2 \left ((a A+3 b B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+3 (a B+A b) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a A \sin (c+d x) \sqrt {\cos (c+d x)}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]

[Out]

(2*(3*(A*b + a*B)*EllipticE[(c + d*x)/2, 2] + (a*A + 3*b*B)*EllipticF[(c + d*x)/2, 2] + a*A*Sqrt[Cos[c + d*x]]
*Sin[c + d*x]))/(3*d)

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (B b \cos \left (d x + c\right ) \sec \left (d x + c\right )^{2} + A a \cos \left (d x + c\right ) + {\left (B a + A b\right )} \cos \left (d x + c\right ) \sec \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*b*cos(d*x + c)*sec(d*x + c)^2 + A*a*cos(d*x + c) + (B*a + A*b)*cos(d*x + c)*sec(d*x + c))*sqrt(cos
(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 4.68, size = 326, normalized size = 4.35 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 A a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b -2 A a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 B b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*A*a*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+a*
A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b-2*A*a*cos(1/
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+3*B*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(
1/2*d*x+1/2*c),2^(1/2))*a)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*
d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [B]  time = 0.62, size = 85, normalized size = 1.13 \[ \frac {2\,A\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)*(A + B/cos(c + d*x))*(a + b/cos(c + d*x)),x)

[Out]

(2*A*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*A*b*ellipticE(c/2 + (d*x)/2
, 2))/d + (2*B*a*ellipticE(c/2 + (d*x)/2, 2))/d + (2*B*b*ellipticF(c/2 + (d*x)/2, 2))/d

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+b*sec(d*x+c))*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________